\Oébv Educef.
Q) ',
3 %
8 2
: 24"
» . =
Arduino SO

Application Book

er | SR

vand more in this...

- %)
2. Edition Q

Welcome to the world of Electronics and Coding. Now that you've opened this book, you're
eager to swim in the sea of wonder and learn new things. Although it may seem difficult to
learn new things on these subjects, you will realize that it is very simple if you proceed step
by step and with the right practices. In the first stages, there will be places that do not fit and
seem meaningless. You will overcome this problem as you practice. You just need a little
patience ..With an easy and accurate roadmap, you can learn how to program in Arduino,

starting from easy and proceeding towards the more complex.

If you want to watch more detailed video explanations of the applications, you can visit our
YouTube channel by scanning the QR code on the first pages of applications. If you want to
access applications digitally, they are also available on our blog page at: http://
maker.robotistan.com. You can access the codes written in the booklet both from the

description section of the related videos and from our blog page.

This booklet was prepared by Robotistan Elektronik A.S. The aim of this booklet is to guide
those who want to start Arduino in the easy and right way. We hope that these contents will
be beneficial to everyone and that they will facilitate your learning process and allow you to

make projects quickly.

For set contents, applications, videos and any kind of suggestions and questions, you can

contact us via our e-mail address: info@robotistan.com

Robotistan Team

Contents

What is Arduino? How to Install and What to Do?.

LED Lighting with Arduino Blink Application

LED Lighting with Button Blink Application.

Analogue Reading and Serial Communication with Arduino.

04
10
14
18

LED Lighting with potentiometer.
Knight Rider Application with Arduino.

Automatic Lamp Application with LDR.

RGB LED Application with Arduino.

Temperature Measurement with NTC.

Making Parking Sensors with Ultrasonic Sensor.

Motor Control with Sound..........coiisiiinsirnninn,

Servo Motor Control with Joystick.

LED Control with IR Controller.

22
26
30
34
40

44

48
52
56

Making a Digital Meter with Arduino.

Servo Motor Control with Motion Sensor (PIR).
RGB LED Control with Bluetooth.

Making Digital Clocks with Arduino.

Using Soil Moisture Sensor with Arduino.

Using Rain Sensor with Arduino

60

.64

70
74
76
82

Using Gas Sensor with Arduino.

86

Using RFID Sensor with Arduino.

Temperature and Humidity Measurement with ESP8266.

Step Motor Control with ESP8266.

90
96

What is Arduino?
How to Install
and What to Do?

robotistan [JEREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Arduino Software Installation

With this book you will enter the world of Arduino and go further to advanced applications.
Arduino drivers and software must be installed on your computer before starting the
applications. We recommend you to install the software before you connect the Arduino board
to your computer with a USB cable. In this way, the Arduino drivers that come with the
software are installed on your computer so that you can easily introduce the board and start

using it immediately.

Downloading Arduino Software

To download Arduino, enter “Downloads” tab on www.arduino.cc.

B o
ARDUIND HOME STORE T ATION RESOURCES COMMUMITY HELP

» ARDUINO
@ > weB EDITOR
» CODE OMLIN

il d
RDUINO
oy

&

e o NEW BOARDS AND
Z, SHIELDS AND KITS,
GOT EVEN BIGGER!
= s OH MY!

After clicking the Downloads tab, a screen appears where you will download the file
according to your operating system. The latest version of the Arduino software at the time
of writing of this guide was 1.8.7. Windows users can click “Windows Installer” option. The

installation files for other operating systems are provided below.

maker.robotistan.com

Arduino Software Installation

Thenapageopensaskingustodonate.Youcandonateasyouwishordownloadthesoftware

withoutdonatingwith “Just Download” option.

N TTUING T B BT N

ARDUINO HOME STORE

SOFTWARE EDUCATION RESOURCES COMMUNITY HELP

Contribute to the Arduino Software

53 $5 510 525 550 OTHER

CONTRIBUTE & DOWNLOAD

Installing Arduino Drivers

After that, the software installation file starts to download. After the download process,
open the file and start the installation process. Make sure that the "Install USB driver” option,

which appears during the installation process is selected.

Arduino Setup: Installation Options — ¥

Check the components you want to install and uncheck the companents
you don't want to install. Clids Next to continue,

Select components to install:

Install USE driver

Create Start Menu shortout
Create Desktop shortout
Assodate .ino files

Space required: 474.5MB

Cancel | Mullsoft Inskall System «3.0 < Badk | MNext = I

maker.robotistan.com 6 |

Arduino Software Installation

After the installation process, connect the board to the computer with the USB cable. The
“New hardware found” window appears on our computer. If the drivers are installed with the
software, the automatic installation option will automatically install the drivers of our

Arduino.

Starting Arduino Program on Your Computer for the First Time
Now, you can open your Arduino program. The first thing you need to do after opening the
program is to set the program to run with your Arduino UNO board. Click on the Arduino UNO

option on Tools> Board menu.

& sketch_apr21a | Arduino 1.8.12 - | X
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch

sketch_apr21 Fix Encoding & Reload

1 Vol SETUE Manage Libraies.. Crl+Shifts | .
2PN serial Monitor Ctrl+Shift-M

1 Serial Plotter Carl+Shift-L

6 |void 1oup WIFi101 / WIFININA Firmuware Updater

/7 put y

Board: "Arduine Uno" Boards Mansger...

5y Port Arduino AVR Boards
Get Board Info Arduino Viin
Programmer. "AVRISP mkll” [&1] arduine Uno

Arduino Duemilanove or Diecimila
Burn Bootloader

Arduino Nano

Arduino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo

Arduino Leonardo ETH
Arduino Micro

Arduino Esplora

Arduine Mini

Arduino Ethernet

Arduino Fio
Arduino BT

LilyPad Arduino USE
LilyPad Arduino

Arduino Pro or Pro Mini

Arduino NG or older

maker.robotistan.com

Arduino Software Installation

Then, select the port to which Arduino is connected on the “Tools” menu, under the “Port”

submenu. This port number may be different on each computer.

 sketch_apr21a | Arduino 1.8.12 — [u] X
File Edit Sketch Tools Help

Auto Format ctrieT
Archive Sketch
sketch_apr21 Fix Encoding & Reload
1 void SSESE Manage Libraris.. Ctrleshifte1 ~
2/ PEA eril Monitor Ctrl=Shift+M
alr Serial Plotter CrleshifteL
¢ oid toop(WO/ WIFININA Firmware Updater
/1BEE A Board: “Arduino Uno” >
o Port Serial ports
Get Board Info. com

COM29 (Arduine Une)

Programmer: "AVRISP mkll"

Burn Beotloader

Now,"you”have”an”Arduino”program“ready“to“use.”

@ sketch_api21a | Arduine 1.2.12 -] X
File Edit Sketch Tools Help

Arduino Una an COM27

maker.robotistan.com

Arduino Software Installation

The function written in the "void setup ()" section in the program will only work once when
the board is powered up. Input / output pins, serial port configuration etc. settings are
adjusted in this section. The "void loop ()" section contains functions that will run
continuously until the board is de-energized after running the commands in the “void setup

()" function.

After writing the program, first click the "Check” option before installing it on the board. The
program first asks you to save the code into a folder on your computer, then compiles the

code and notifies if there is any error.

& sketch_apr21a | Arduing 1.8.12 - o x

File Edit Sketch Tools Help

sketch_apr21a

1 void setup() { -~
2 // put your setup code here, TO run once:

4 pindode (13,0UTEUT) ;
€}

& void loop() {
// put your main code hers, to run repeatedly:

11 digitalirite (13,HIGH):
12 delay(1000)

13 digitalWrite(13,LOW);
14 delay(1000):

15

Copy error messages

For example, there is an error message about this line as we forgot to add a semicolon (;)

after writing "delay”, the command before the "digital Write” function in this code.

If there is no error in the code you have written and your Arduino board is connected to the
computer with USB,

You can upload our code to your board by clicking the “Install” option.

maker.robotistan.com

LED Lighting with
Arduino Blink
Application

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

LED Lighting with Arduino

Materials Required:

- Arduino Uno

- Breadboard

-Red LED

- 330 Ohm Resistor (Amber - Amber - Brown)

- 2 Pcs Male-Male Jumper Wire

What is LED?

LED is an abbreviation consisting of the initial letters of “Light Emitting Diode”. Unlike the
small 6V bulbs that are we are familiar with and used in most of our projects, LEDs have two
different legs as anode and cathode. Of these, the anode must be connected to the positive
voltage, the "+" terminal, and the cathode to the negative voltage, the “-" terminal or the

ground (GND).

anode [: I cathode

cathode
anode

Voltage, Current, and Ohm’s Law

Various circuit elements operate at different voltages. Arduino board operates with 5V
voltage. However, the situation is slightly different for LED. The maximum current to pass
through the LED should not exceed 15 mA (milliamps = 1/1000 amp). Remember that
Arduino works with 5V. 5V value indicates the output voltage of the board. But the LED
needs 15 mA current. Things are getting a little complicated. No need to be afraid!

Everything has a solution.

11

maker.robotistan.com

LED Lighting with Arduino

LED is an abbreviation consisting of the initial letters of “Light Emitting Diode”. Unlike the
small 6V bulbs that are we are familiar with and used in most of our projects, LEDs have

two different legs as anode and cathode. Of these, the anode must be connected to the

positive voltage, the "+" terminal, and the cathode to the negative voltage, the “-" terminal
or the ground (GND).

V=ixR
In this equation, “V" represents voltage, "i" represents current, "and ‘R

represents resistance. If the LED, which needs 15 mA current, is connected to one of our

Arduino’s 5V output pins;

5V=0,015AxR

is the equation we get. If we take “R” out of this equation, we find the result as 333. This
means that we need a resistance of 333 Q (ohms) to use the LED with 5V. It is not crucial

to find the exact value, we can use the 330 Q resistor available.

Let's set up the circuit and then start writing our project code.

rxmm Arduino : o oo o Ll m.

12

maker.robotistan.com

LED Lighting with Arduino

After setting up the circuit, open the Arduino IDE to write the code and open a hew program
page by selecting “File” from the tabs above and then “New". On the page that opens, you
can delete the lines with “//” followed by comments.

On this page, you will write the codes in curly brackets “{}" in the lines starting with “void

setup” and "void loop”.

1 void setup() {

2 pinMode (8,0UTPUT) ;

31

4

5void loop() {
digitalWrite (8,HIGH) ;
delay (500) ;
digitalWrite (8,LOW) ;
delay (500) ;

O 0w ® - o

In Setup, pin 8 on the board is set to output. If the pin to be used is not determined as output
or input, the input or output functions that you will write in the continuation of the program

cannot use that pin. Now that you have set the pin, let's write the code for LED lighting.

In the "loop” section, it first sets pin 8 to the HIGH logic level, i.e. 5V, waits for 500
milliseconds (equals half a second) without any action, and this time sets pin 8 to the LOW
logic, i.e. OV or ground level. After this process, the microcontroller waits for half a second

without any operation thanks to the “delay” function.

By changing the time periods of the “delay” commands in this code, you can change the
duration of the periods in which the LED is on or off. If you want to use another pin, all you
need to do is replace the pin number in the “pinMode” and "digitalWrite "functions with the

pin number you want to use. Do not forget to connect a 330 Q resistor in series to our LED!

13

maker.robotistan.com

LED lighting with Button

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

LED Lighting with Button

Materials Required:
- Arduino Uno

- Breadboard

- Red LED

- Push Buton

- 330 Ohm Resistor (Amber - Amber - Brown)

- 10k Ohm Resistor (Brown - Black - Amber)

- 5 Pcs Male-Male Jumper Wire

In this application, you will learn to use pins on Arduino as input. In this way, you can ensure
to be notified in Arduino when a button is pressed remotely. The LED circuit may be the same
as the previous application. Only the leg to which the LED is connected will be #10 in this

application. Let's set up the circuit and then continue with coding.

DIGITAL (PuM=~)

In order to read the data from the button, it is required to use it together with 10k Ohm
resistor. You need to use “pull-up” or “pull-down” resistance to prevent interference on the
pin and to detect wrong signals caused by the interference when the button is not pressed.
In this application, we will use “pull-down” resistance. In this project, the pin reads the value
of OV, i.e. LOW logic level, when the button is not pressed. The pull-down resistance ensures
that the voltage on this pin remains constant at OV unless the button is pressed and the

value is HIGH. Now that you have learned the logic of the circuit, let's continue with coding.

15

maker.robotistan.com

LED Lighting with Button

1 #define button 8
2 #define led 10

4 int button_state = 0;

6 void setup() {

pinMode (button, INPUT) ;
8 pinMode (led, CUTEUT) ;
9}

11 woid loop() {

1z button state = digitalRead(button);
13 if (button state = 1){

14 digitalWrite (led, HIGH);

15 }

16 elsef

17 igitalWrite (led, LOW) ;

With "#define” line, we name the pin 8 as "Button” so that we can write much more
memorable and easier code by writing “Button” instead of 8 to necessary places. We make
the similar definition in the LED for the pin 10. The variables are used to access the data read
in the software or the information we want to store later. The data stored differs according
to the type of variables. The most commonly used variable is int, the abbreviation of
"integer”. This variable can hold numbers from -32767 to 32767. These numbers must be
integers. If you want to assign a comma separated value, it will round it to an integer. In this
code, we define the “button_state” variable and set the initial value as zero. The initial value
does not necessarily have to be zero, but when you define an integer, it can be a random
number in the variable. We set the initial value to zero in order not to cause any
inconvenience in the software.

Set the"” Button "pin (designated as number 8) as the input with the “pinMode” command. On

the line below, set the LED pin (designated as number 10) as input.

16

maker.robotistan.com

LED Lighting with Button

When setting the input-output, it is enough to type “INPUT" for the buttons of input and”
OUTPUT" for the pins of output. If you do not define the pins that you will use as input-
output, these pins will not work as you want or stably. In the "loop” section, you will read the
data coming from the button and evaluate this data with “if-else” command. In the end, the

LED will be on or off according to the data being "1 "or "0".

17

maker.robotistan.com

Analogue Reading
and Serial
Communication
with Arduino

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Analog Reading and Serial Communication with Arduino

Materials Required:
- Arduino Uno

- Breadboard
- 10k Ohm Potentiometer

- 3 Pcs Male-Male Jumper Wire

When you look at the Arduino board, you will see the “Analog Input” pins. It is possible to
read the voltage on this pin by converting from digital to analog signal using these pins. The
Arduino is capable of reading OV (zero) and 5V digitally. If there are intermediate values
between these two extremes, it cannot detect it and accept the incoming voltage as OV or
5V according to the threshold value. Thanks to analog pins, you can detect intermediate
voltage values from OV to 5V and convert them to digital. You will use a adjustable resistor
(potentiometer) to obtain signals at intermediate values. In the application, you will read the
numerical value of the voltage coming from the analog input pin on the serial port. Let's set

up the circuit and continue with coding.

o

) .

DR ceo e jo e
DIGITAL (PWM=~) o,

* o

e o o0

® o o0

® o o0

* o

19

maker.robotistan.com

Analog Reading and Serial Communication with Arduino

1 #define pot_pin RO

3 int wvalue = 0;

5 |void setup() {

6 Serial.begin(9600);

7 Serial.println("Reading Pot Value");
B}

10 void loop{) {

11 wvalue = analogRead(pot_pin);

12 Serial.println(value);

13 delay(300);

Define, as you did before for the previous codes, the "AQ" pin as “potpin”. In the next line,
define the variable in"integer” type and the value name to store the values that the analog

pin reads.

In the “setup” part, as we used the digital input-output in the previous software, the pins were
adjusted according to their use. There is no need to define input / output for analog reading,
you will not use the “pinMode” command in this software.

You need to initiate serial communication to send the data to the computer. This serial
communication allows Arduino to communicate with the computer via USB connection and

enabling to transfer the data to the computer.

Start this communication with “Serial.begin(9600);" line When Arduino starts running the code,
it will first start communication with the computer. After the communication established,
“Serial.println (“Pot Value Reading"”);” line and "Pot Value Reading” text will displayed on the
serial monitor on the computer. “Serial.print” and “serial.println” commands will be explained in

detail below.

20

maker.robotistan.com

Analog Reading and Serial Communication with Arduino

21

maker.robotistan.com

LED Lighting with
Potentiometer

robotistan [JREE &3 YouTube
You can access the blog You can access the

post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

LED Lighting with Potentiometer

Materials Required:

- Arduino UNO

- Breadboard

- 10k Ohm Potentiometer

- Red LED

- 330 Ohm Resistor (Amber - Amber - Brown)

- 5 Pcs Male-Male Jumper Wire

In our previous application, you read the voltage value from the analog pin. In this application,
you will check the brightness of the LED again according to the value received from the
analog pin. In the first LED lighting application, it was possible to send OV or 5V to the LED as
we used a digital output. So, the led was either off or on. Using a new feature of Arduino, you
will be able to send voltage to the LED at intermediate values in the range of 0-5 V. Voltage
control enables to adjust the brightness of the LED. Until this application, you have learned
about digital input-output and analog input. With this application, you will learn the analog

output, i.e. the PWM feature. Now, let's set up the circuit and continue with coding.

maker.robotistan.com 23

LED Lighting with Potentiometer

PWM (Pulse with Modulation) is an abbreviation for Signal Width Modulation. You can watch
the video of this application by scanning the square code at the end of the application for
detailed information about PWM from 6 of the pins (~ 3,5,6,9,10 and 11) with the tilde (~) on

Arduino Uno. After setting up the circuit, let's continue with coding.

#define pot_pin A0
#define led 3

void setup() {
pinMode (led, CUTEUT) ;

}

void loop{) {

B R BT PO VR

int value = analogRead(pot _pin);
9 value = map(value,0,1023,0,253);

10 analogWrite (led, value) ;

Since you will not use digital input-output in this application, you will not make any

adjustments in the “setup” section.

The aim is to read the data from the POT in the main program cycle and to send this data to
the LED. First, read the data from the potentiometer with the command “analogRead”. Write
this value to the "value” variable. In the second line, compare the value from O to 1023

between 0 and 255 using the “map” command.

While analog reading is possible at 10 bit (2 ~ 10 = 1024) resolution, analog writing is
possible at 8 bit (2 ~ 8 = 256) resolution. Now, you need to rate and print out the data read.
Instead of “map” command, you can divide it directly into 4. After comparing, you can set

PWM pins as output with “analogWrite "command.

24

maker.robotistan.com

LED Lighting with Potentiometer

25

maker.robotistan.com

Knigt Rider Application
with Arduino

robotistan [JIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Knight Rider Application with Arduino

Materials Required:

- Arduino UNO

- Breadboard

- 13 Pcs Male-Male Jumper Wire

- 6 Pcs LED

- 6 Pcs 330 Ohm Resistor (Amber - Amber - Brown)

In this application you will see the use of the “for” loop. The “for” loop can be used for
successive operations. In order to turn on 6 LEDs in the application, you will need to set
output for them all and turn on respectively. This can be easily implemented with the output
identification and LED lighting commands that you have learned before. If you want to make
changes to the written code without using the "for” loop, you will have to make changes to
each line one by one, however, in the "for” loop you can proceed much faster both in

understanding and writing the code. After setting up the circuit, let's continue with coding.

o =TI ¢ o o

oo &PTIT= o o
¢ s =PTIT= o o

27

maker.robotistan.com

Knight Rider Application with Arduino

1 int leds[] = {2,3,4,5,6,7};
void setup() {
for{int i=0; i<€; i++){

wde (leds[i], OUTPUT);

void loop() {

11 for(int i=0; i<6; i++){

14 igitalWrite (leds[i],LOW) ;

15}

1 for{int j=0; j<6; j—-){

When defining the digital pins one by one, you used “int" or “#define” to name the outputs
before. This you will use an array in order to use 6 outlets. You can think of arrays as a set of
variables. At the top of the code, define an array whose variable types are “int” (integer) and
that are named “leds”. Separate the array elements with commas. Since we will use numbers

from 2 to 7 from digital outputs, we have determined our elements in this way.

You can duplicate the elements of the array. When defining the array, you also can write in
“leds []" the quantity of elements in the array. For example, when calling elements from an
Array, such as “int leds [6] = {2,3,4.5.6,7};", the number of the first element starts at 0
(zero). You can use "leds[*array element sequence number*]” in “setup” or “loop” to call the
desired element. So, if you type “leds[0]" to call the zeroth element of the array, it will be

equal to 2. 5. If you type “leds[5]" to call the array element, this will be equal to 7.

28

maker.robotistan.com

Knight Rider Application with Arduino

In this application, we want to turn on 6 LEDs, and in this case we need to set the output
from 6 digital pins. The part of the “for" loop up to the first semicolon in parentheses is

defined as the variable of the condition to be used for the loop.

In this software, we have defined it in parentheses because it will only be used for the “for”
loop. If you wish, you can define a different variable or define the variable on the software
and then use it here.

win
I

“| <6" determines the condition of the “for” loop. As long as the variable “i” is less than 6, it

win
[

will repeat the lines of code within the “for” loop. If the variable "i" is equal to or greater than
6, it will continue to run the code from where the loop ends instead of executing the “for”
loop.

i
I

We want the variable "i” to increase its value by 1 each time we do the “for” loop with “++i +

+ uz”. Thus, the first value of the variable is O (zero). Also, in the commands you give digital

i

output, when you write the “i" variable, it calls the element from the array. Hence, when you
write “pinMode(ledler[0], OUTPUT)", the software calls the zeroth element from the "leds”
array and perceives as “pinMode(2, OUTPUT)". In this way, we define the pin 2 as output.
Since the “for” loop will do this from O to 5, we define 6 pins as output with a single line.

In the “loop” section, the use of the "for” loop proceeds with the same logic as in the "setup”
section. At this time, instead of defining the output, we turn 6 LEDs on and off successively
with “digitalwWrite” command. You can watch the detailed video description of the “for” loop

by scanning the following qr code.

29

maker.robotistan.com

Automatic
Lamp Application
with LDR

robotistan [JEREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Automatic Lamp Application with LDR

Materials Required:
- Arduino Uno
- Breadboard
- 5 Pcs Male-Male Jumper Wire
- 330 Ohm Resistor (Amber - Amber - Brown)
- 10k Ohm Resistor (Brown - Black - Amber)
- 5mm Red LED
- 5mm LDR

In this application, you will learn to read the data from LDR, which can detect the light in the
environment and according to this data, and turn the LED on and off. LDR (Light Dependent
Resistance), i.e photoresistor, changes the resistance according to the amount of light in the
environment. This resistance change can be detected by the Arduino board. In this way, since
it is possible to know the amount of light in the environment, you can make an automatic
lamp by turning on the LED when the environment is dark and turning it off when there is
light. You will also send the data to the computer and display it on the serial monitor. Let's

start by setting up the circuit.

2dsoI

. XL
|l

PO

bl
x
i
>
3
523
-
6;

—

D)

NI 907TVNYV

Q®m o

maker.robotistan.com 31

Automatic Lamp Application with LDR

<O B3 [& Arduino

#define led 3

2
3 |\void setup() {
4 pinMode (led, CUTPUT) ;
5 Serial.begin(9600);
6}

void loop() {

g int light value = analogRead(a0);
10 Serial.println{light value);
11 delay(50);
12 if(light value > 900){
13 digitalWrite {led, LOW);

14| }
15 if(light value < 830){
16 digitalWrite (led, 51GH) ;|

In coding part, name the pin to which you will connect the LED in the first line. You will do this
with “#define” command. After this process, instead of writing 3 when needed, we will simplify

the process by writing “led”.

You need to output the pin to which the LED is connected in the “setup” part of the code, and
start serial communication. We started serial communication at 9600 baudrate. This number
determines how fast the computer and Arduino board communicate. This number can’t be

randomized. It is required to use pre-determined speeds.

You canuse300,600,1200,2400,4800,9600,14400,19200,28800,38400 or 115200
baudrates. The baudrate value that you type in the Arduino code must be the same as the speed

in the lower right corner of the serial monitor that you will turn on the computer.

Define an “int" type variable named “light” in the loop where the main algorithm will run and print
the value the LDR reads. Send this value to the computer via serial communication. After waiting
for 50 ms, evaluate whether the value received with "if” command is below or above the desired
values to decide. If there is low light in the environment, the value on LDR will decrease. In our
environment, we want the LED to turn on after the value of 850. Since the value will increase

when the environment starts to be lightened, we want it to turn off after 900.

32

maker.robotistan.com

Automatic Lamp Application with LDR

After sending the code to the board, you can see the data by clicking on the "Serial Monitor”
button in Arduino IDE. When you put our hand over the LDR, the readings will change as the
light intensity changes.

& 007_LDR | Arduino 18.12 - o X

File Edit Sketch Tools Help

007_LDR

1 #define led 3 . . A
2 Serial Monitor

Jroid setmp0 1

4 pinMode (led, OUTPUT);

5 Serial.begin(9600);

6}

8 void loop() {

int light_value = analogRead (A0) ;
Serial.println(light_value);
delay(50)
2 1f(light_value > 800) {
digitalWrite (Led,10W) ;

}
1f(light_value < 850) {
digitalirite (lad, A1GH) ;

@ COM10 {Arduino/Genuino Uno) — O e

| | send |

788 2
798
306
309
313
814
817
319
822
830

9600 baud

L

MNoine endng | (Gs00bad | Clear output

33

maker.robotistan.com

RGB LED Application

robotistan [JEIREE &3 YouTube
You can access the blog You can access the

post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

RGB LED Application

Materials Required:

- ArduinoUno

- Breadboard

- 330 Ohm Resistor (Amber - Amber - Brown)
- RGB LED

- 10k Ohm Potentiometer

- 9 Pcs Male-Male Jumper Wire
RGB LED has 3 led structures including red, green and blue colors. RGB (Red, Green, Blue)

name is formed by combining the initial letters of the colors it contains. When you consider 3
LEDs, there must be a total of 6 legs, each with a plus and a minus. The RGB LED has 4 legs.
It uses 3 colors inside plus legs commonly. When energized from the plus leg, the
corresponding LED will turn on when a color is connected to its negative leg. There are also
RGB LEDs that have common negative legs instead of a common positive legs. In this case,
the corresponding LED will turn on when you give the positive signal. You can use the terms
of common anode (positive) and common cathode (negative) to describe LEDs. In this case,

the LED we will use will be the common anode.

Red @ Red @
Common Anode @ =i Common Cathode @ =
Blue @ —— Blue@ E—
® — e — |

In this application, we want to light up intermediate colors besides full brightness. We need

to use PWM to turn the LED on to the desired brightness level. Since PWM feature is present
in certain legs (3,5,6,9,10,11), we will pay attention to use these legs when making

connections. Let's start by setting up the circuit.

35

maker.robotistan.com

RGB LED Application

In this application, we want to light up intermediate colors besides full brightness. We need
to use PWM to turn the LED on to the desired brightness level. Since PWM feature is present
in certain legs (3,5,6,9,10,11), we will pay attention to use these legs when making

connections. Let's start by setting up the circuit.

In the code section, like in other software, you will assigh names and create the variables.
When assigning names, it can assign variables as shown here. You can create an integer type
“potPin” variable and write A3 in it. In this case, everywhere you write “potPin”, it will be like
you have written number A3. You can also use the “define” command when making this
definition. The command must be used as “#define potPin A3". There is no need to put the

equal sign and a semicolon at the end of the line.

1 int pot_pin = RO;

2 int pot_value = 0;

4 int red pin = 9;
5 int green pin = 10;
6 int blue pin =11;

2 int red value = 0;
9 int green value = 0;
10 int blue wvalue = 0;

36

maker.robotistan.com

RGB LED Application

void setup() {

}

}

pinMode (red_pin, OUTFUT) ;
pinMode (green_pin, OUTFUT);
pinMode (blue pin, CUTPUT) ;

8 woid loop() {

pot_walue = analogRead{pot pin};
if (pot_wvalue < 34l}m
pot_value = (pot_wvalue*3) / 4;

red_walue = 255 - pot_walue;
green_value = pot_wvalue;

blue wvalue = 0;

i

else if (pot wvalue < &82){
pot_wvalue = ((pot _walue-341)%3)/4;
red value = 0;

green value = 255- pot_value;
blue value = pot walue;
}
else{
pot_walue = ((pot_value-683)*3)/4;

red value = pot wvalue;
green value = 0;
blue value = 253-pot_walue;

}

analogWrite (red pin, 255-red walue);

analogWrite (green pin, 255-green wvalue);

analogWrite (blue pin, 255-blue_value);

In the “setup” part of the project, it is enough to determine the pins to be output. You will

need 3 outputs for the negative legs of the red, green and blue LEDs.

When you start the main program loop, you will continue by evaluating the value read from
the “potPin” pin. After the reading, you will use the “if", “ifelse” and “else” commands to make
the necessary LEDs according to the corresponding values. If the value in the first “if”

command is less than 341, we want it to perform operations under the “if” parenthesis.

maker.robotistan.com

RGB LED Application

In “if”, we divide the value in "potDeger” by 4 to multiply by 3 to compare between 0-255
(values with possible PWM outputs). In this way, we find 255 with the value of 340 a result
of this calculation

The analog pin can read from 0 to 1023. This value is divided into 3 different regions
because there are 3 LEDs. These regions are identified as 0-341, 342-681, 682-1023. We
use the "if-else” structure to determine in which of these regions is the incoming value. The
incoming value is evaluated with the “if” command; if it is the desired value, it is set to “if”
and skipped in other conditions (if else, else). If the “if” condition cannot be met, “if else”, i.e.
the second region is evaluated. Depending on whether this is provided, either apply the
commands in it or pass to the “else” line. You can specify multiple digits instead of 3 by
duplicating the "if else” lines.

Similar commands are applied in each step. Only the assigned value is in different colors. For
example, when we look inside “if”, the incoming value is between 0 and 255. Here, it is
needed to clarify that when a LED is controlled by PWM, it is lit at full brightness when you
give 255. However, in this circuit, there will be a reverse effect as we have connected the
negative leg of the LED to the PWM, instead of positive. When the PWM output is set to 0
(zero), the LED will be lit at full brightness and will turn off at 255 . We will solve this
problem by subtracting the values from 255 before sending them to the LEDs to overcome
the reverse situation. In this case, it will be possible to write the code as if a normal LED
were connected within the “if” conditions. In the first “if”, subtract the “potValue” from 255
and send it to the red LED. And send the potValue directly to the green LED. Set the value O
(zero) to turn off the blue LED. To switch between colors, completely turn off one LED in
each of the 3 steps and ensure that the sum of the values sent to the other LEDs is 255.
When you turn the potentiometer with this method, one color increases while the other

decreases and color transitions occur.

38

maker.robotistan.com

RGB LED Application

39

maker.robotistan.com

Temperature
Measurement
with NTC

robotistan [

You can access the blog
post of the application
from the link below.
http://bit.ly/arduinodersleri

@ YouTube

You can access the

video of the application

from the link below.
http://bit.ly/arduinovideodersler

Temperature Measurement with NTC

Materials Required:

- Arduino Uno

- Breadboard

- 5 Pcs Male-Male Jumper Wire

- NTC Temperature Sensor

- 5mm Red LED

- 330 Ohm Resistor (Amber - Amber - Brown)
- 10K Ohm Resistor (Brown - Black - Amber)

As in the LDR application, we will ensure that what we want is done by reading and
interpreting the analog signal while reading the temperature. NTC (Negative Temperature
Coeficient) is an element that reduces its internal resistance against the rise in temperature.
One of the elements commonly used instead of NTC is PTC. PTC reacts by increasing its
internal resistance against temperature rise. In order to convert the data read from NTC into
a temperature unit, it needs to be processed. At the same time, because the variable
resistance value according to the temperature increase of the NTC sensor is not constant, it
is necessary to pass through logarithmic functions. You do not need to examine these
functions in detail at this time, it is just enough to know the processes. After learning the
logic of using the NTC sensor, you can examine this part in detail. Let's start by setting up
our circuit first. In this application, you will create a different function and do some

operations by going to the function.

11

maker.robotistan.com

Temperature Measurement with NTC

#include <math.h>
#define led 2
void setup() {

Serial.begin(9600);
pinMode (led, CUTPUT) ;

BRI RS BT VR

5|}

[I<]

10 double Temmistor (int analogCkuma) {

11 double temp;

12 temp = log(((10240000 / abalogCkuma) - 100000));

12 temp = 1/ (0.001128148 + (0.000234125 + (0.0000000876741 * temp * temp)) * temp);
14 temp = temp — 273.13;

5 return temp;
16|}

18 wvoid loop() {

9 int value = analogRead(&0);

double temp = Termistor (value);

Serial.println(temp);

if(temp > 30){
digitalWrite {led, HIGH) ;

}

elsef
digitalWrite (led, LOW);

H

delay{250);

m L b

@

|

S T N T T N T O O T O A
0w R]

o
et

Since you will use logarithmic functions in the code section, you need to include the math
library. Include the math library with the "#include <math.h>" line. At the bottom, name the

2nd pin with the “#define led 2" line.

Since you will send the data to the computer in the “setup” section, start a serial
communication and define the pin named “led” as the output.

In the main loop, read analog data on the NTC connected to the pin “AQ". Write this data in
the "variable” value. You will send this data to the “Thermistor” function and convert it to a
temperature value. You can also use it in the main loop by typing the codes in the
“Thermistor” function without defining a function. When you define a function, you get rid of
the complex structure of the code and divide it into sections. In this way, the main code will

be simpler and easier to write and understand later when read.

42

maker.robotistan.com

Temperature Measurement with NTC

You have written the mathematical operations into the "double Termistor (intanalog Reading)”
function located between the” setup “and” loop "functions. Since you specify the function
name, you can assign any other name.

When you send the read value to the function, the return value of the function will be the
temperature value, and you will display this variable on the serial monitor on your computer
with serial communication. Evaluate the temperature value with the “if” condition, and turn on
the LED if it is above 30 degrees. If it is below 30 degrees, turn off the LED. In this way, we
have made a temperature alarm system based on the temperature value. We put a 250 ms wait
at the end to prevent the software from repeating itself very fast. You van open the serial

monitor via Arduino IDE and observe the temperature values.

@ COMI10 (Arduine/Genuino Uno) - O X

| send |

28.61 2
28.52
28.52
28.79
29.25
20.43
29.71
30.27
30.36
30.74
30.92
31.20
31.77
32.05
32.05
32.05
32.05
-11.83
229.06
-64.78
334.04
32,05 =
[] Autoscroll No line ending v| |9600 baud v| | Clear output |

43

maker.robotistan.com

Making Parking
Sensors with
Ultrasonic Sensor

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Making Parking Sensors with Ultrasonic Sensor

Materials Required:

- Arduino Uno

- Breadboard

- 8 Pcs Male-Male Jumper Wire

- Buzzer

- 330 Ohm Resistor (Amber - Amber - Brown)
- HC-SRO4 Ultrasonic Sensor

You will meet a new application model in this ultrasonic sensor application. The HC-SR04
ultrasonic sensor has metal parts that can send and detect sounds. After the sound is sent
from the sensor, if it is reflected from any object or obstacle available and comes back to the

sensor. The receiver can detect the reflected signal and make a measurement.

The duration between the time when the sensor is sent and received is measured in order to
calculate the distance. Since we know the speed of sound in the air, we can calculate the

total distance by time and speed. Let's continue with setting up the circuit.

. XL
|l

outnpuy EEX¥

ur
ole o o o
ole o o o
ole o o o
ole o o o
ole o o o
ole o o o
ole o o o
ole o o o
ole o o o
ole ¢ ¢ o
e e 0 o0
e e e o0
e e e oo
e e e oo
e e e o0
e e e oo
e 0 o0

P
3

o
=
@
H
]
>
=

——

c
<

e isssseseses
w0

45

maker.robotistan.com

Making Parking Sensors with Ultrasonic Sensor

<> B3 [& Arduino

#define echoPin &
#define trigPin 7
#define buzzerPin 2

int maximumRange = 50;
int minimumRange = 07

void setup() {
pinMode {trigPin, CUTPUT);
pinMods (echoPin, INPUI);
pinMode (buzzerPin, OUTEFUT):
}

L O T I

o e
I

14 void loop() {

15 int value = distance_ func (maximumBangs, minimumBange)r
lg melody (valus*10);

17}

19 int distance_func({int maxrange, int minrangs)
20 /{
21 long duration, distance;

23 digitalWrite (trigPin, LOW) ;
24 delayMicroseconds (2);

25 digitalWrite (trigPin, HIGH);
26 delayMicroseconds (10);

27 digitalWrite (trigPin, LOW);

29 duration = pulssIn{echoPin, HIGH):
30 distance = duration / 58.2;7
31 delay(50)»

33 if(distance »= maxrange || distance <= minrange)
34 return 07

35 return distance;

36}

358 int melody(int dly)

39 {

40 tone {buzzerPin, 440) 7
41 delay(dlv):

42 noTone (buzzerPin) ;

13 delay(dly):|

Name the pins that you will use with "#define” commands in the software section. Define
integer type variables named “maximumRange” and “minimumRange”. In the "setup” section,

set the pins to be input and output.

maker.robotistan.com

Making Parking Sensors with Ultrasonic Sensor

The main program cycle seems too short. In this section, first go to the distance function.
Define the variables "duration” and “distance in "long” type. “long” is a variable like “integer”
you used before. It can hold much larger numbers than the integer variable. Numbers from
+2,147,483,647 to -2,147,483,647 can be assigned in it. When it is defined by the number
volume it can hold, it uses 2 times more memory than the “integer” variable. After defining
the variable, make the sensor's “trig” pin high and low, so that the sensor sends a sound
wave to the physical environment. After sending the sound wave, we wait for the sound
wave come back echoing from the object with the "pulseln(echoPin,HIGH)” command. This
time can be measured with the "pulseln” command. Print this value to the “duration” variable.
Now that the time has been measured, you need to calculate the distance. Divide the
measured time by “58.2" to convert it to distance according to the speed of sound. When you
get the distance value, if this value is not between the minimum (2 cm) and maximum (400
cm) values that the sensor can measure, command return with O (zero) value. If it is in the

desired interval, return to the main function and write data into the “measurement” variable.

The value in the measurement variable is multiplied by 10 and sent from the main function
to the “melody” function. This value will be used for the waiting periods in the "melody” to
determine the time between 2 bip sounds. The sensor beeps in short intervals if it measures

short distance and in long intervals if it detects an object in long distance.

47

maker.robotistan.com

Motor Control
with Sound

robotistan S °YQUTUbe

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Motor Control with Sound

Materials Required:

- Arduino Uno

- Breadboard

- 5 Pcs Male-Male Jumper Wire

- DC motor

- 330 Ohm Resistor (Amber - Amber - Brown)
- BC547 NPN Transistor

- Sound Sensor Board

In this example, you will provide motor movement according to the value read by the
sound sensor. The sound sensor provides a digital output by measuring the ambient
sound level with a microphone. The sensor circuit amplifies the audio signal received
from the microphone and converts the analog audio signal into a digital signal according
to the threshold level.

Since the motor draws excessive current, a motor driver board is used in such circuits.
The motor drive powers the motor according to the signal it receives from the Arduino.
This way you can safely control the motor without damaging Arduino.

The threshold value of the sound level can be adjusted with the potentiometer on the

sound sensor. This adjustment can be made with the help of a screwdriver.

maker.robotistan.com

Motor Control with Sound

1 #define sensor_pin 3
#define motor_pin 5
int motor_state = LOW;

(3]

[T)

woid setup() {
{sensor_pin, INFUT):
pinMode {(motor_pin, OUTEUT);

il

wold loop{) {

10 if({ digitalRead(sensor_pin) }{
if (motor_state == LOW){
motor_state = HIGH;

[

1se]
motor_state = LOW;

sk
[T R T X
Mo

16 }

17 digitalWrite (motor_pin, motor_ state):r

}
15 delay (50);
20}

First, define the variable named sound. This variable enables to keep the value read by the
Sensor in memory.

In the "setup()” section, set the signal pin from the sound sensor as input. We then set pin 5
to the motor drive as output.

In the loop () section, read the data from the sound sensor with the “digitalRead()"” function
and evaluate it in “if". If the sound comes back, write "HIGH" in” MotorStatus “variable.
Otherwise, write “LOW. When the “if-else” loop is over, send the "MotorStat” variable as the
digital output in the "digitalwrite(MotorPin, MotorStat)” line. You can also use the motor
without using variables, with “digitalWrite (MotorPin, HIGH)" or “digitalWrite (MotorPin, LOW)"
commands in “if" and “else”. But, remember to put a 50 ms wait at the end of the code so
that the main loop does not start again too quickly.

When the sound level exceeds the threshold value, the sound variable takes the value HIGH.
In this case, the HIGH value is sent to the motor drive connected to pin 7 and the motor
rotates for 300 milliseconds.

When the sound level is below the threshold value, the sound variable takes the value LOW.
In this case, the LOW value is sent to the motor drive connected to pin 7 and the motor is

stopped.

50

maker.robotistan.com

Motor Control with Sound

51

maker.robotistan.com

Servo Motor Control
with Joystick

robotistan [JEREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Servo Motor Control with Joystick

Materials Required:

- Arduino Uno

- Breadboard

- 1 Pcs Servo Motor

- 1 Pcs Joystick

- 8 Pcs Male-Male Jumper Wire

The joystick outputs position as an analog signal depending on whether the lever is moved
forward-backward or right-left.
The servo is a motor that positions itself at an angle according to the signal received from

the data pin.

.= G

rxmm Ardii o

When the lever on the joystick is moved back and forth, the voltage values on the VRX pin
change and the voltage values on the VRY pin changes when it is moved to the right or left.
When you click on the joystick, the SW pin gives 5V output. In this example, the VRX pin will
be used as we will only use one servo. Since the data from the VRX pin is analogue data
between 0 and 5V, connect it to the AO pin on Arduino. Connect the data pin of servo motor
to pin 3 which can give analog output. The sample code allows the servo motor to rotate

between 0 and 180 degrees with the data from the joystick.

53

maker.robotistan.com

Servo Motor Control with Joystick

1 #include <Servo.h>
2 Servo motor;
3 int value;

4 int degree;

& void setup() {
motor.attach(3);

51}

10 wvoid loop() {
11 value = analogRead(A0);

12 degree 0,1023,0,180);

13 motor.write (degree);

First, add the “Servo.h” library to the code. Then create a servo motor called “motor”. In the

“setup ()" section, introduce to the software the “motor” connected to pin 3.

In “loop () section, first make the reading from the joystick connected to the AQ pin with the
"analogRead () " function and equalize the variable named "reading” to the value read with

the "analogRead()” function.

Arduino Uno provides data from 0 to 1023 via analog reading pins. However, the servo motor
can move between 0 and 180 degrees. Therefore, you need to use the “map ()" function to
control the servo motor with the value read from pin AO. The “map ()" function allows the

input variable to be proportional to the desired range.

The reading value, which is proportional to the “map()” function, is equalized to the degree
value. Finally, the degree value is printed on the servo motor so that the servo reaches the

desired degree.

54

maker.robotistan.com

Servo Motor Control with Joystick

55

maker.robotistan.com

LED Control
with IR Controller

robotistan [JIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

LED Control with IR Controller

Materials Required:
- Arduino Uno

- Breadboard

- 9 Pcs Male-Male Jumper Wire
- RGB LED

- IR Controller and Module

- 3 Ohm Resistor (Amber - Amber - Brown)

e AN <ils -

:::W!!::: Q!

....3.55..........

seeodeodls

LI

The application enables the LED to produce light in the desired color based on the infrared
signals received from the IR controller. Red LEDs turn on when we press 1, green LEDs turn
on when we press 2, and blue LEDs turn on when we press 3. When we press 4, all LEDs
produce white light flashing at the same time. When we press 0, all “LEDs"” turn off. No
feature was assigned to other buttons.

There is an infrared LED on the IR control. The infrared LED blinks at a certain frequency
according to the address of the button pressed and sends the signal to the IR receiver.
Usually this infrared LED has a flashing frequency of 38kHz. The frequency of the remote

control used in this example was 38kHz.

57

maker.robotistan.com

LED Control with IR Controller

<&

B3 [# Arduino

int RECV_PIN = 2;

IRrecv irrecv(RECV_PIN);
decode_results results;
$define CHL OxFFR2ZSD
#define CH OxFF629D
$define CH2 OxFFEZ1D
#define PREV O0xFF22DD
#define NEXT OxFFOZFD
#define PLAYPAUSE (0xFFC23D
#define VOL1 OxFFEOLF
#define VOLZ2 OxFFAS57
#define EQ OxFFY906F
$define BUTTONO OxFF&897
#define BUTTON100 OxFF9867
16 #define BUTTONZ200 OxFFBO4F
#define BUTTON1 OxFF30CF
#define BUTTONZ OxFF1S8ET

[T R - LI L Y-S U RN U e

o e = e
o W O

-
-1

=]

19 #defins BUTTON3 OxFF7A85

20 #define BUTTON4 OxFFlOEF

21 #define BUTTONS OxFF38C7

ZZ #define BUTTONE OxFFSRRS

23 #define BUTTONT7 OxFF42BD

24 #define BUTTONE OxFF4ABS

25 #defins BUTTONY OxFFSZRD

26 int red led pin = 9;

27 int green_led pin = 10;

2B int blue_led pin = 11;

29

30 woid setup(){

31 pinMode (red led pin, OUTPUT);

3z pinMode (green led_pin, OUTPUT);

33 pinMode (blue_led pin, OUTEUT)

34 Serial.begin(9600);

35 irrecv.enableIRIn();

36}

37 woid loop() {

3B if (irrecv.dscode ({sresults)){

39 if (results.wvalus == BUTTONZ) {

40 digitalWrite(red led_pin, !digitalRead(red led pin));
41 if (digitalRead(red led pin) == HIGH){
42 Serial.println("Red LED ON");

43 }

44 else{

45 Serial.println("Red LED OFF");

46 }

a7 }

48 if (results.wvalue == BUTTON3) {

49 digitalWrite (green_led pin, !digitalRead(green led pin));
50 if (digitalRead(green_led pin) == HIGH){
51 Serial.println("Green LED ON");

52 }

#include <IRremote.h> // You can download IR library from: https: ithub.com/z3t0/Arduino—JIRremote

maker.robotistan.com

58

LED Control with IR Controller

w
5

elzef
Serial.println("Green LED CFF");
}
}

o
[TS

w ot
@

57 if (results.valuse == BUTTCON4) {
58 digitalWrite (blue_led pin, !digitalRead(blue_led pin));
if (digitalRead{blue led pin) == HIGH){

cn
S o

Serial.println("Blue LED ON");
}
else{
Serial.println{"Blue LED OFF");
}
}
if (results.value == BUTTCNO) {
digitall

o R

oo

)

ite(red led pin, LOW);

digitall te(green led pin, LOW);
digitalWrite (blue_led pin, LOW);
Serial.println{"LED OFF");

I T~ R S V- SR O V. V- V- O

[T

71 }

2 if [kesults.value = BUTTONS}h
73 digitalWrite (red led pin, HIGH);

4 digitalWrite (green led pin, HIGH);
75 digital te(blue led pin, HIGH);
Te Serial.println("LED ON White™)

77 }

irrecv.resume();

First of all, add to the code the “"IRremote.h” library, which contains the functions required to
use the IR module. Then, define the necessary variables. Then introduce the “receive “pin to
the library.

The variables defined in this section are the addresses of the buttons on the controller. Not all
buttons will be used in this example. Only use the buttons numbered O, 1, 2, 3, 4 will be used.

In the "setup” section, set the LED pins as outputs. Start serial communication at 9600
communication speed and then start IR communication.

In the loop section, read the data coming from the controller with the “irrecv.decode(&results)”
function and assign them to the “results” variable. Compare the “results” variable with the
defined addresses. Turn on the red LED if the “results” variable is equal to” BUTTONT, we turn
on the green LED if it is equal to "BUTTONZ2", and turn on the blue LED if it is equal to
"BUTTONS3". Turn off all LEDs if it is equal to "BUTTONO" and turn on all the LEDs and ensure
RGB LED to be white if it is equal to "BUTTON4".

59

maker.robotistan.com

Making a Digital Meter
with Arduino

robotistan [JIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Making a Digital Meter with Arduino

Materials Required:
- Arduino Uno

- Breadboard

- 16x2 Character LCD

- HC-SRO4 Ultrasonic Sensor

- 10k Ohm Potentiometer

- 4 Pcs Male-Female Jumper Wire

- 16 Pcs Male-Male Jumper Wire

The ultrasonic distance sensor is a device that can send a sound wave and detect the
reflected sound wave. LCD is an element that displays characters on the screen according to
the data provided. The LCD screen consists of 2 lines and can display 16 characters per line.
Each character consists of 5x7 pixels.

The potentiometer is an adjustable resistor. In this circuit we used the potentiometer as a
voltage divider. When the voltage is sent to two different resistors connected in series,
voltages proportional to the resistance values on the resistors are obtained. And the
potentiometer can be used as a voltage divider. When the potentiometer is turned, the
voltage of the middle pin changes. This changing voltage allows adjusting the Contrast of

the LCD screen. Let's continue with setting up the circuit.

maker.robotistan.com

Making a Digital Meter with Arduino

1 #include <LiquidCrystal.h>
2 int trigPin = 7;

3 int echoPin = &;

int pulsein_time;

5 int distance;

int rs = 12, en = 11, d4 = 5, d3 = 4, dé6 = 3, d7 = 2;
! LiguidCrystal lecd{rs, en, d4, d53, de, d7);

o

9 void setup() {

e({trigPin, CUTFUT);
e {echoPin, INFUT) ;
1z led.begin{lé, 2);

te(trigPin, LOCW);
seconds (35} ;
te(trigPin, HIGH);
seconds {10} ;
rite(trigPin, LCW);

20 pulsein_time = pulseIn(echoPin, HIGH, 11600);
21 distance = pulsein time*0.0345/2;

22 led.cleax (),

ursor (0, 0);

int ("Distance:");

ursor {0, 1);

t{distance);

£ {"en") ;

You will take distance information from ultrasonic sensor in the code section and display it

on LCD screen. The “LiquidCrystal.h” library is used to use the LCD. This library contains the

functions necessary to use the LCD. Add the LCD library to the code. Then define the

necessary variables. Define the LCD pins and make necessary pin settings.

In the “setup” section, define the echo pin as the input and the trig pin as the output.

Then, set the LCD row-column length with "lcd.begin()” function.

In the “loop” section, first make the ultrasonic sensor ready for measurement by bringing the

trig pin to the LOW level. Then the trig pin is set to HIGH and then to LOW to send the sound

wave.

maker.robotistan.com

Making a Digital Meter with Arduino

Measure the total round trip time of the sound wave with the “pulseln()” function. The round
duration is multiplied by 0.0345 to calculate the distance. The number 0.0345 is the distance
the sound wave takes in 1 microsecond. The calculated distance value must be divided into
two, as the sound wave travels back and forth. In the parking sensor construction application,
the measured value was divided by “58.2". There is no difference between these two
processes. With the “Icd.clear()” function, the remaining text is deleted from the screen. With
the "Icd.setCursor()” function is used to define the line and column of the text to be displayed
on the LCD screen. Finally, distance value is displayed on the LCD with the

“lcd.print()” function.

63

maker.robotistan.com

Servo Motor Control
with Motion Sensor
(PIR)

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Servo Motor Control with Motion Sensor (PIR)

Materials Required:

- Arduino Uno

- Breadboard

- Servo Motor

- Motion Sensor

- 5 Pcs Male-Male Jumper Wire

- 3 Male-Female Jumper Wire

In this example, you will use a motion detector to set up a system where you can move the

motor when motion is detected in the environment.

o
e e ee eseeee e o

RxEE Ardufme

The motion sensor works by detecting infrared light waves in the environment. Materials
naturally emit infrared waves because of heat. The motion sensor detects the changes in the
infrared waves emitted by the materials and produces the signal output.

In this sample code, you will read the data from the motion detector and ensure the

movement of the servo motor when a motion is detected in the environment.

65

maker.robotistan.com

Servo Motor Control with Motion Sensor (PIR)

<> B3 [& Arduino

#include <Servo.h>

int pirPin = 8§;
int servoPin = 9;
int motion state;

Servo motor;

void setup() {
motor.attach(servoPin) ;
pinMode (pirPin, INPUT);

T T e T e T R Y R O R

o e e e
W B O
—

void loop() {

15 motion state = digitalRead(pirPin);
16

17 if (motion state == HIGH){
18 motor.write (150);
19 delay(250);

20 motor.write (30);
21 delay(250);

22 motor.write (150);
23 delay(250);

24 motor.write (30);
25 delay(250);

26 motor.write (150);
27 delay(250);

28 motor.write (30);
29 delay(250);

30 motor.write (80);
31 }

3z elzsef

33 motor.write (80);
34 }

35|}

First, add the servo motor library “Servo.h” to the code. Then, make the necessary pin
definitions. Then define a variable called motion to store the data received from the sensor.
And define a servo motor called “motor”. The “motor” variable is a variable that allows
controlling the servo motor.

In the "setup” section, associate the pin with which the servo motor is connected to the
motor variable. Then set the pin to which the sensor is connected as input.

In the “loop” section, read the motion data from the sensor with the “digitalRead ()" function.
Send the required angle command to the servo motor according to the value of the motion
pin with “if-else” structure.

maker.robotistan.com

Servo Motor Control with Motion Sensor (PIR)

67

maker.robotistan.com

RGB LED Control
with Bluetooth

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

RGB LED Control with Bluetooth

Materials Required:

- Arduino Uno

- Breadboard

- 9 Pcs Male-Male Jumper Wire

- Bluetooth module

- RGB LED

- 330 Ohm Resistor (Amber - Amber - Brown)

In this example, you will receive the data sent via the Bluetooth module and check the color
of the RGB LED.

Set up the circuit as shown below.

Rxwm A cu|no”

RGB is a term formed by combining the initials of Red, Green and Blue. RGB led is a
component consisted of the combination of 3 LEDs of main colors. It allows the creation of
color combinations by giving different voltages to the LEDs of different colors inside. There
are two kinds of RGB LED types. These are the common anode and common cathode. The
common anode RGB LED is made by combining the positive pins of the 3 LEDs inside. The
common cathode RGB LED is made by combining the negative pins of the 3 LEDs inside. In

this example, common anode RGB LED was used.

69

maker.robotistan.com

RGB LED Control with Bluetooth

Arduino uses the UART (Universal Asynchronous Receiver Transmitter) protocol to
communicate with the Bluetooth module. This is a serial communication protocol. In order to
use the UART protocol, the Baud Rate (Communication speed) on both sides must be the
same. 4800, 9600, 57600, 115200 are the most commonly used communication speeds. In
this example, we will use 9600 Baud Rate. The Bluetooth module uses this communication

speed by default.

70

maker.robotistan.com

RGB LED Control with Bluetooth

1 int received data;
2 int red pin = §;

3 int greem pin = 10;
4 int blue pin = 11;

void setup() {
Serial.begin(9600);
pinMode (red_pin, OUTPUT) ;

)

-1

inMode (green_pin, CUTFUT) ;
pinMode (blue_pin, OUTPUT);

10}

11 woid loop() {

1z if({Serial.availakle()>0){

13 received data = Serial.read();
14 }

15 if (received data == 'k"){

16 digitalWrite (red pin, LOW);

17 di ite(green_pin, HIGH);
1 digitalWrite (blue_pin, HIGH);
}

_—

20 else if(received data == 'y'){

igitalWrite (red_pin, HIGH);

alWrite (green_pin, LOW) ;
digitalWrite (blue_pin, HIGH) ;
}
_—

else if(received data == 'm'){

digitalWrite (red pin, HIGH);

27 di al te(green_pin, HIGH);
28 digitalWrite (blue_pin, LOW) ;
2 }

else{ |

italWrite (red_pin, HIGH);

al te{green_pin, HIGH);
ite{blue_pin, HIGH);

First, define the variables to use.

Start serial communication in the “setup” section. Then define output pins for RGB LEDs.

In the "loop” section, read the data received through serial communication and equalize it to
the variable named data. With “if else,” else "and” if-else "structures, turn on the RGB LED
according to the value of the data variable. After installing the code to Arduino, you can do
RGB LED control with an Arduino Bluetooth terminal application that you will install on our

phone.

' 71

maker.robotistan.com

RGB LED Control with Bluetooth

< Bluetooth SCAN
ON [¢

Your device (Galaxy S6 edge+) is currently visible to
nearby devices.

AVAILABLE DEVICES

‘E] Arduino

') 55495435

Bluetooth pairing request

Enter PIN to pair with Arduino (Try 0000 or
1234).

PIN

(O PIN containing letters or symbols

CANCEL 0K

To connect to Bluetooth from your phone, first, you need to activate Bluetooth. Then enter
the Bluetooth settings. A screen similar to the picture on the left should appear. This screen
may appear differently on different phones. A device with the name defined when setting
up Bluetooth appears on the screen. Click on the device and select match. In the Arduino

code, enter the password defined in the settings section and make the connection.

Downloading the application called Arduino Bluetooth
Control to your phone via Google Play. With this

application you will send data to the Bluetooth module.

Arduino Bluetooth Control
s \ broxcode
H PeGI3
2.5MB

INSTALL

Contains ads

72

maker.robotistan.com

RGB LED Control with Bluetooth

Get notified by sms

Set the phone number where you wish to be notified
Shaker il
Shake your device to control your arduino!

Choose from the list

Configure data to send while shake
BUTTONS AND SLIDER

Range
Set the range of your seekbar

Command buttons configuration
Configure data to send

{ Buttons

4

Then, enter the Arduino Bluetooth Control application
that you have installed on your phone and click the

settings button at the top right.

In the settings, click on the "Command buttons
configuration” tab and define the data it will send via
Bluetooth when you click the buttons. Click Button A
and type “k” on the screen that appears. Write "y” for
Button B and “m” for Button C.

Then leave the settings section back to the main screen.
Click on the Buttons & Slider tab on the main screen to

open the buttons to control the RGB LED.

Click on the A, B and C buttons to send the necessary
commands to the Arduino via Bluetooth.
When you press “k”, the RGB led is red; When you press

u

y", it is green; when you press the “m, it is blue.

maker.robotistan.com

73

Making a Digital Clock
with Arduino

robotistan [JEREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Making a Digital Clock with Arduino

Gerekli malzemeler:

- Arduino Uno

- Breadboard

- DS1302 RTC Module

-16x2 LCD Screen

- 10k Ohm Potentiometer

- 17 Pcs Male-Male Jumper Wire

- 5 Pcs Male-Female Jumper Wir

When you try to make a clock on devices like Arduino, the biggest problem you will face is
that in case of a power failure, Arduino stops counting the time. This causes deviations in
time and prevents you from learning the right time. RTC modules are built to keep time
synchronous. This module, which can operate even with very little power, counts with the
crystal on it without deviation in time for many years thanks to its battery. This crystal
produces 32000 signals per second. The RTC reads these signals and counts one second
forward in every 32000 steps.

In order to use the watch, you must first adjust the time to the current time. Therefore, you

need to install our setting code first.

75

maker.robotistan.com

Making a Digital Clock with Arduino

<O B3 [& Arduino

#include <virtuabotixRTC.h>
int CLEK PIN = [H
int DAT_PIN = 7;
int RST PIN = B;
virtuabotixRTIC myRTC(CLE _PIN, DAT PIN, RST_PIN);
void setup() |
Serial.begin(9600);
myRTC.setD51302Time (10, 10, 14, 4, 13, 9, 2018);
9}
10 |void loop{) {

dm o M W k)

11 myRTC.updateTime () ;

12 Serial.print{"Tarih / Saat: ");
3 sSerial.print (myRTC.dayofmonth);

14 serial.print("/");

15 Serial.print (myRTC.month);

16| Serial.print("/");

17| Serial.print (myRTC.year);

18| Serial.primt{" ");

19 serial.print (myRTC.hours);

20| serial.print{":");

21 Serial.print (myRTC.minutes);
22| Serial.print{":");

23 Serial.println(myRTC.seconds);
24| delay(1000);

25}

Define the necessary variables. Determine which RTC pins you will assign to the Arduino pins
you will use. In the “setup” section, start serial communication at 9600 communication speed.
Then set the time as seconds, minutes, hours, day of the week, day of the month, month and
year. In the loop section, read the time from the RTC and print it to the serial port screen.
Check the readings on the serial port screen. After making sure there are no errors, you can

start the display code on the LCD.

: 76 :

maker.robotistan.com

Making a

Digital Clock with Arduino

R T BT TR Ry

=)

SN N

oo

a

I T
o e

#include <LiquidCrystal.h>

#include <virtuabotixRTC.h>

int CLE PIN = 6;

int DAT PIN = Ti

int RST_PIN = 8;

virtuabotixRTC myRTC(CLK _PIN, DAT PIN, RST_PIN);

int rs = 12, en = 11, d4 = 5, d5 = 4, dé = 3, d7 = 2;
5 LiguidCrystal lecd(rs, en, d4, d5, de, d7);

void setup() {
led.begin(le, 2);

1}

void loop() {
myRTC.updateTime () ;
led.cleax{);
led.setCursor (0,0);
led.print (myRTC.dayofmonth) ;
led.print ("/");
led.print (myRTC.month) ;
led.print("/");
led.print (myRTC. year);
led.setCursor (0, 1);
led.print (myRTC. hours) ;
led.print{":");
led.print (myRTC.minutes) ;
led.print(":");
led.print (myRTC.seconds) ;
delay(1000);

You can download this library from: https://github.com/chrisfryer78/ArduinoRTClibrary

First, include the necessary libraries in the code. Then assign the pins to the variables.

Introduce the assigned variables to the library.

In setup() section, adjust the aspect ratio of the LCD. In this example, since we used a 16x2

LCD, we set the aspect ratio to 2 by 16.

In loop() section, first read the time data from the RTC. Then clear the characters on the LCD
screen. Otherwise the characters may overlap, leading to obtain incorrect data. Starting from
the first column and the first row, print the date as day, month, and year. From the first
column of the second row, print the time in hours, minutes, seconds and add a waiting time

of 1 second.

maker.robotistan.com

Using Soil Moisture
with Arduino

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Using Soil Moisture Sensor with Arduino

Materials Required:

- Arduino Uno

- Breadboard

- Soil Moisture Sensor

- 3 Pcs Male-Male Jumper Wire

- 3 Pcs Male-Female Jumper Wire

- Buzzer

- 1 Pcs 330 Ohm Resistor (Amber - Amber - Brown)

The soil moisture sensor consists of two electrodes. It measures the conductivity between
the electrodes and gives information about how moist the soil is. If the soil is moist, the
conductivity between the electrodes increases. Since the resistance decreases as the
conductivity increases, less voltage starts to come from the voltage divider inside the sensor.
If the soil is dry, a higher voltage is obtained as the resistance between electrodes will

increase, and this data is processed analogously to learn the amount of moisture in the soil.

- O

rxmm Ardu nly

In this example, when the amount of moisture in the soil exceeds a certain threshold,
it sends a signal and the buzzer on the circuit starts to make sound. In this circuit, we
set the threshold value with the potentiometer on the sensor. Therefore, if the
threshold exceeds the value set, it will give OV output from pin DO. Likewise, you can
also prepare analogue data from pin AO in the range of OV-5V to operate when a
certain threshold value is exceeded in the code.

79

maker.robotistan.com

Using Soil Moisture Sensor with Arduino

In the code, you will read the data from the soil moisture sensor and ensure that the Arduino

sounds alarm with the buzzer if the soil moisture decreases.

<> B3 [3] Arduino

int sensorPin = 49;
int buzzerPin = 8;

int data;

void setup() {
pinMode (sensorPin, INPUT);
pinMode (buzzerPin, CUTPUT);
}
void loop() {

R R R T I S A

woom

10 data = digitalRead(sensorPin);

11 if{data == true){

1z digitalWrite {buzzerPin, HIGH);
13 delay{100);

14 digitalWrite (buzzerPin, LOW);
15 delay(100);

16 }

17| else{ |
18 digitalWrite (buzzerPin, LOW);
19 }

200}

First, define the necessary variables. Make input-output settings in the “setup” section. In
the “loop” section, the value received from the sensor is equalized to the data variable with
the “digitalRead ()" function. The status of the data variable is then checked by the "if-else”
structure.

When the soil moisture sensor detects moisture, it gives OV signal from digital output pin.
The data variable LOW indicates that moisture has been detected by the soil moisture
sensor. In this case, the data variable takes the value HIGH and the commands inside the else
structure are executed.

When no moisture is detected by the soil moisture sensor, 5V output is given from the

digital output pin of the sensor. In this case, the buzzer starts to make sound.

80

maker.robotistan.com

Using Soil Moisture Sensor with Arduino

81

maker.robotistan.com

Using Rain
Sensor with
Arduino.

. B o
robotistan | VLR

You can access the blog
post of the application
from the link below.
http://bit.ly/arduinodersleri

@ YouTube

You can access the

video of the application

from the link below.
http://bit.ly/arduinovideodersler

Using Rain Sensor with Arduino

Materials Required:

- Arduino Uno

- Breadboard

- Rain Sensor

- 3 Pcs Male-Male Jumper Wire

- 3 Pcs Male-Female Jumper Wire
- Buzzer

-1 Pcs 330 Ohm Resistor (Amber - Amber - Brown)

If the weather is rainy, when the amount of water above the rain sensor exceeds a certain
threshold, it will send a signal and the buzzer on the circuit will start to make sound. We
prepared this circuit to give an alarm according to the signal received via the analog pin.
The rain sensor consists of two electrodes. It informs us by measuring the conductivity
between the electrodes. Water drops on the sensor increase the conductivity between the
electrodes. The sensor sends this data as analog and digital outputs.

You will read the data from the rain sensor in the code and ensure that it will sound alarm

with the buzzer when it rains.

83

maker.robotistan.com

Using Rain Sensor with Arduino

1 int sensorPin = RO;
2 int threshold value = 100;
3 int buzzerPin = 8;

4 int data;

o

void setup() {
pinMode (buzzerPin, CUTEUT);

-

8}
void loop() {

[
=]

data = analogRead(sensorPin);

11 if(data > threshold wvalue){

12 digitalWrite (buzzerPin, HIGH);
13 delay(100);

14 digitalWrite (buzzerPin, LOW);

135 delay(100);

1g }

17 else|

18 digitalWrite (buzzerPin, LOW);

First, define necessary variables. In the “setup” section, define the pin to be connected to
the buzzer as the output. In the “loop” section, the value obtained from the sensor
is equalized to the data variable by the "analogRead()" function. The status of the data
variable is then checked by the "if-else" structure.

If the data is greater than the threshold value read from the rain sensor, it indicates that the
weather is rainy. If there is moisture on the sensor, the commands in “if" are executed and the
alarm sounds.

If the data read from the rain sensor is below the threshold level, it means that the weather is

dry. If the weather is dry, the commands in "else" are executed and the alarm does not sound.

84

maker.robotistan.com

Using Rain Sensor with Arduino

85

maker.robotistan.com

Using Gas Sensor
with Arduino

robotistan [JEIREE &3 YouTube

You can access the

video of the application

from the link below.
http://bit.ly/arduinovideodersler

You can access the blog
post of the application
from the link below.
http://bit.ly/arduinodersleri

Using Gas Sensor with Arduino

Materials Required:

- Arduino Uno

- Breadboard

- Gas Sensor

- Buzzer

- 7 Pcs Male-Male Jumper Wire

- 1 Pcs 330 Ohm Resistor (Amber - Amber - Brown)

In this circuit, we made an alarm with gas sensor. When the amount of natural gas exceeds a
certain threshold, it will send a signal and the buzzer on the circuit will start to sound.
Similarly, it can be done by determining the threshold value with the potentiometer on the
sensor and receiving digital data from pin DO.

There are a number of resistors inside the gas sensor. The gas in the environment interacts
with the resistors inside the sensor and changes the resistance values. By means of a
voltage divider, the sensor gives different voltage values according to the gas density and,
the amount of gas in the environment is measured with analog reading of these voltage

values.

._ﬁ-rr-l.....

..oo-.o.--o-
DAY e e 000

maker.robotistan.com

Using Gas Sensor with Arduino

The gas sensor can provide analog and digital outputs. In this application, you will set up the
sample circuit using the analog output.

In our sample code, you will read the value from the analog pin of the gas sensor and
compare it with the threshold value. When the value you read is greater than the threshold

value in the code, it will sound an alarm with the help of buzzer.

1 int threshold value = 400;
2 int buzzerPin = 9;

3 int walue;

void setup() {

pinMode (buzzerPin, CUTPUT);

R TR

}
9 woid loop() {
10 value = analogRead(a0);
11 if(value > threshold_wvalue) {
12 digitalWrite (buzzerPin, HIGH);

14 gitalWrite (buzzerPin, LOW);
15 delay(100);

1e }

17 else{

18 digitalWrite (buzzerPin, LOW);

First, define the necessary variables. The threshold value of the sensor can be adjusted by
changing the value of the variable “thresholdValue”. In the “setup” section, set the pin to
which the buzzer is connected as the output. In the “loop” section, read the analog value
from the sensor with the “analogRead()” function and equalize it to the variable named
“value”. Then, using the if-else structure, compare the variable named “value” with
“thresholdValue”. When the analog data that read from the sensor is greater than the
threshold variable, open and close the buzzer pin to generate an alarm with the buzzer. When
the data read from the sensor is below the threshold value, give LOW value to the buzzer pin

so that the buzzer does not sound the alarm.

88

maker.robotistan.com

Using Gas Sensor with Arduino

89

maker.robotistan.com

Using RFID Sensor
with Arduino

robotistan [JIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Using RFID Sensor with Arduino

Materials Required:

- Arduino Uno

- Breadboard

- Servo Motor

- RC522 RFID module

- RFID Card

- 12 Pcs Male-Male Jumper Wire

In this application, the RFID card reader will read the ID number of the card and sent it to
Arduino via SPI (Serial Perhiperal Interface) protocol. If the ID number is registered in the
system, it activates the servo and opens the door. If it is not registered, the door remains
closed.

o [44<P)HOEL] o

91

maker.robotistan.com

Using RFID Sensor with Arduino

SPl is a serial communication protocol based on Master-Slave logic. That is, they need a clock
signal to work synchronously with each other. In this way, communication is provided more
reliably than asynchronous protocols such as UART. For SPI, you will need at least 4 pins. SCK
is used for the clock signal. MOSI (Master Out Slave In) is used to send data from the master
device to the slave. MISO (Master In Slave Out) is used to send data from the slave device to
the master. The SS (Slave Select) pin determines which device the master device
communicates with. The RC522 RFID module used in this application also communicates via
the SPI protocol.

Now, let's write the code.

<O E3 [3] Arduino

#include <SPI.h>
#include <MFRC522 _h>

#include <Servo.h>

int RST_PIN = §;
int 55_PIN = 10;
int servoPin = 8;

S T BT R U R

wom

Servo motor;
MFRC522 rfid(SS_PIN, RST_PIN);
byte ID[4] = {97, 76, &7, 9};

12

13 |void setup() {

14 motor.attach (servaPin);

15 Serial .begin(9600);

16 SPI.begin();

7 rfid.PCD_Init();

18|}

19

20 void loop() {

21

22 if { ! rfid.PICC IsNewCardPresent())
23 return;

24

25 if { ! rfid.PICC ReadCardSerial())
26 return;

92 '

maker.robotistan.com

Using RFID Sensor with Arduino

27

28 if (rfid.uid.uwidByte[0] == ID[0] &=

29 rfid.uid.uidByte[1l] == ID[1] &&

30 rfid.uid.uidByte[2] = ID[2] &s&

3l rfid.uid.uidByte[3] == ID[3]) {

32 Serial.println("Door is OPEN");
33 Print Screen();

34 motor.write (180);

35 delay (3000} ;

36 motor.write {0);

37 delay (1000);

38 }

39 elsel

40 Serial.println("Unauthorized card");
41 Print Screen();

4z }

43 rfid.PICC Halth();

44 |}

45 woid Print Screen() {

4 Serial.print ("ID Number: ");

47 for({int sayac = 0; sayac < 4; sayact+){
48 Serial.print(rfid.uid.uidByte[sayac]);
49 Serial.print(" ");

50 }

51 Serial.println("");

52}

First, define the libraries that you will use in the code. The MFRC522 library contains the

functions required to use the RC522 module.

RST_PIN and SS_PIN variables are the pins used by the RC522 module. The servoPin variable

is the pin to which the servo motor is connected.

Then, define the “Servo” variable named motor. After making the necessary settings for the
RFID module, create an array called “ID”. The elements of this array are the ID number of the
RFID card you want to register. After writing all the code, you can change the "ID" variable by

reading your own card through serial port. In this way, you can authorize access to any card.

In the "setup” section, the pin to which the servo motor is connected is associated with the
motor variable. Then, start the serial communication and SPI. The RC522 module is started

with the “rfid.PCD_Init()" function.

93 '

maker.robotistan.com

Using RFID Sensor with Arduino

In the loop section, wait until a new card is read from the RC522 module. When the new card
is read, with the "if-else” structure, compare the registered card number and the card number
read. If the read card is authorized, servo motor movement is provided and the card number
is printed to the serial port with "Printtoscreen()” function. This function will be explained in
the next chapter. If the read card number is not authorized, an unauthorized card warning is

printed on the serial port.

Parts that are repeated too often in the code are converted to functions. In this way, the
complexity of the code is minimized so that the memory of the processor is not used

unnecessarily.
The “printtoscreen()” function is created by us. Where this function is used, commands in the

function are executed. This function allows the read RFID card information to be written to

the serial port.

94

maker.robotistan.com

Using RFID Sensor with Arduino

95

maker.robotistan.com

Temperature and
Humidity Measurement
with ESP8266

robotistan [JEIREE &3 YouTube

You can access the blog You can access the
post of the application video of the application
from the link below. from the link below.
http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Temperature and Humidity Measurement with ESP8266

Materials Required:

- Arduino Uno

- Breadboard

- ESP8266 WiFi Module

- DHT11 Humidity and Temperature Sensor
- 8 Pcs Male-Female Jumper Wire

- 3 Pcs Male-Male Jumper Wire

In this application, you will send the temperature and humidity data received via DHT11 to

Thingspeak platform using ESP8266 WiFi module.

115200 Baud rate (Communication speed).

The UART protocol is used when communicating with ESP8266. In this example, we will use the

Thingspeak is an open source loT (Internet of Things) application. Users send data to the site via

HTTP and make their own applications visually better and easy to understand thanks to the

be generated in Thingspeak with data from the DHT11 sensor.

graphical interfaces on the site. In this example, time-humidity and time-temperature graphs will

mmmmmmmmmmmmmm

o 0s 0000000
e e 000000
e e 000000

97

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

ESP8266, thanks to the wireless communication circuit on the ethernet protocol, allows us to
connect to the wireless internet. Devices such as Arduino do not have any hardware that
allows them to use the ethernet protocol. Therefore, modules are utilized to use the ethernet
protocol. These modules convert the ethernet protocol into communication protocols that
provide easier communication. ESP8266 is an example of these modules. It acts as an
interpreter, which simplifies and converts the Ethernet protocol into a UART protocol.

The DHT11 is a sensor for reading humidity and temperature data. As with the sensors used
before, this sensor allows us to measure the humidity and temperature of the air by
measuring the conductivity. There is an NTC (Negative Temperature Coefient) inside the
sensor. NTC is a kind of resistor, and as the ambient temperature increases, its conductivity
increases and the resistance value decreases. There are 2 electrodes inside the sensor and a
surface that holds the moisture in the air between the electrodes. This surface changes the
conductivity between the electrodes as the amount of moisture in the air increases. In this

way, the humidity level in the air can be measured.

#include <SoftwareSerial.h>
ude <dhtll.h>
g Wifi Name = "Your Wifi Name";

ing

g password = "Wifi Password";
rxPin = 10;
txPin = 11;
dhtllPin = 2;

g ip = "184.106.153.149";
temp, huminity;
0 dhtll DHT11;

(115200) ;

2 ("BT");
{lesp.£ind("0K")) {
"AT") ;
1n("No ESPB266 found.");

esp.println{"AT+CWMODE=1") ;
while (lesp.find ("0R")) {
esp.println ("AT+HCWMODE=L1") ;

23 }

Serial.println{"Connecting Wifi");

98

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

25 esp.println("AT+CWJAP=\""+Wifi Name+"\", \""+password+"\"");
26 while (!'esp.find ("CE"));
27 Serial.println("Connected Wifi");

28 delay(1000);

0 |woid loop{) {

31 esp.println ("AT+CIPSTRRT=\"TCP\", \""+ip+"\", 80");
32 if{esp.find("Errozr")){
Serial.println("AT+CIPSTART Error");

34 }
35 DHT1l.read(dhtllPin);

36 temp = (float)DHT1l.temp H

huminity = (flcat)DHT1l.humidity;

B String data = "GET https://api.thingspeak.com/update?api_key=2F55993RWVDCTSUS'
3g data += "&fieldl=";

at

40 data += String(temp);

41 data += "&field2=";

42 data += String(huminity);
43 data += "\rn\r\n";

nt ("AT+CIBSEND=") ;

44 esp.pri
45 esp.
d4& delay(2000);

47 if{esp.find(">")){

48 esp.print(data);

ntln{data);

50 Serial.println{"Data Sent");
51 delay(1000);

52 }

53 Serial.pri

49 Serial.pri

In({"Connection closed");
54 esp.println("AT+CIPCLOSE");
55 delay(1000);

The ESP8266 module communicates with Arduino via serial communication.

This communication can be provided with Arduino Uno pins 0 and 1, however, it can be done on
software basis from other pins with the SoftwareSerial library.

In this example, you will communicate with the ESP8266 module using the SoftwareSerial library.
First, add the SoftwareSerial library to the code. Then add the “dht11.h” library of the temperature
and humidity sensor to be used.

Keep the name and password of the network to be connected as variable in memory.

Change the "agName” and "agPassword” variables according to the network name and password.
Create a variable for the RX and TX pins to which you will connect the ESP8266 module.

Then, create a variable for the pin to which you will connect the DHT11 sensor.

99

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

Create the variable called “ip” where you will keep the IP number of the Thingspeak platform
that will be used in the application. With DHT11, create “temperature” and

"humidity” variables to keep the temperature and humidity data to be read. Since these data
will be consisted of comma seperated values, create them in "float” type. The "float” is a
variable where you can store decimal numbers. Set the pins to which you will connect the
ESP8266 module. In the “setup” section, start the communication with the computer. Use
9600 for communication speed with the computer. Then, start the communication with
the ESP8266 module with the “esp.begin” function. The speed of serial communication
must be the same with the communication speed of the ESP8266 module. That's why we
used 115200. If the sample code does not work, you can correct this problem by updating
the firmware of ESP8266 module. You can find detailed information about the firmware
update on:
https://maker.robotistan.com/esp8266-ile-iot-dersleri-1-esp8266-modulunu-guncelleme/

Send an AT command via serial communication to see if the ESP8266 module is ready. Wait
until the ESP8266 module is ready. Set the module as “client by sending "AT+CWMODE=1"

command. Then, connect to the network with “AT+CW]JAP” command. “

In the "loop” section, connect to Thingspeak with the "AT+CIPSTART” command. Check
whether there is an error in connection setup. Then, read the temperature and humidity
values with the DHT11 sensor. Load the readings into variables named “temperature”
and "humidity”.

Create the command named data to be sent to Thingspeak. Write your own key in the “key”
section here. It will be explained later how to learn your own key.

Create the data and send the data length to the ESP8266 module with the “AT+CIPSEND"
command.

The ESP8266 module sends the “>" icon when ready. Wait for this icon to appear. When the
icon appears, send the connection data to the module. Terminate the connection with

“AT+CIPCLOSE" command when the data transmission is completed.

100

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

In this sample application, you will use the Thingspeak platform to display data on the

Internet. Sign up to Thingspeak platform from https://www.thingspeak.com .

|:| ThingSpeak*" Channels - Apps~ Community Support -

My Channels

New Channel Search by tag Q

After signing up, enter "My Channels” section under “Channels” tab. Then click “New

Channel” button.

New Channel

Name ESP8266 Sicaklik-Nem
Description
&
Field 1 sicaklik vl
Field 2 nem =l

Make the necessary settings on the incoming page as shown above. Then click “Save

Channel” button at the bottom of the page to create your new channel.

101

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

Private View Public View Channel Settings Sharing AP| Keys

Write API Key

Key 68DV3IA40LQ27YFD

The "api key” is required for Arduino to communicate with Thingspeak. Arduino connects to
your Thingspeak account with the “api key” and saves the data to your channel. Click on the
"Api Keys" tab to access the "Api key”. Copy the “Key” in the "Write APl Key” pane on the
incoming page and paste it to the required place in the sample Arduino code.

After installing the code in Arduino, open the serial port via Arduino IDE.

@ COM10 (Arduine/Genuino Una) — O =

Connecting to the network...

Connected Network
GET /fupdate?key=5c4U3000F3K3Y73Csfieldl=0.00sfield2=0.00

Giinder

Data Sent.
Connection Closed

NL ve CR ile birlkte, « | | 9600 baud ~ Clear output

Otomatik Kaydirma

After setting the serial port speed to 9600, display the results coming from the Arduino.

After the message sent text appears in the serial port, view the data via thingspeak.

102

maker.robotistan.com

Temperature and Humidity Measurement with ESP8266

Private View Public View

Channel Settings

Sharing APl Keys

Add Visualizations

l B Add Widgets ” Data Export

Channel Stats
Created: S minyigsase

Updated: 5minuiss.age
Entries: 0

Field 1 Chart

sicaklik

ESP8266 Sicaklik-Nem

Date

E o # x

ThingSpezk.com

Data Import / Export

Field 2 Chart

nem

MATLAB Analysis MATLAB Visualization

[E ol A

ESP8266 Sicaklik-Nem

Date

ThingSpeak.cam

By clicking the “Private View" tab, you can also view the data sent by Arduino on graphics

maker.robotistan.com

103

Step Motor Control
with ESP2866

robotistan [JEIREE &3 YouTube
You can access the blog You can access the

post of the application video of the application
from the link below. from the link below.

http://bit.ly/arduinodersleri http://bit.ly/arduinovideodersler

Step Motor Control with ESP8266

Materials Required:

- Arduino Uno

- Breadboard

- ESP8266 WiFi Module

- Step Motor

- ULN2003A Motor Driver

- 11 Pcs Male-Female Jumper Wire

- 2 Pcs Male-Male Jumper Wire

In this application, you will control the step motor via the WEB Server opened using
ESP8266. Step motors are electromechanical devices that convert electrical energy into
physical energy with rotary motion. As the name suggests, these motors run step by step.
They continue their movement by opening and closing of the coils in order. In this example,
the step motor used was 4-phase with 4 coils inside. Step motors are controlled by very high
speed switching motor drives and motor control boards. The step motor driver we used

drives the motor according to the signals it receives from Arduino.

105

maker.robotistan.com

Step Motor Control with ESP8266

First, define the variables. Write “agName” and “agScrypter” variables according to your Wi-Fi
name and password. Define the motor pins. These variables are the pins to which the step

motor will be connected.

<> B3 [3] Arduino
1 String Wifi Name = "Your Wifi Name";
2 |5tring Wifi Password = "Wifi Password";
3 int motorPinl = 3, motorPinZ = 4, motorPin3 = 5, motorPind = &;
4
5 void setup () {
[pinMode (motorPinl, CUTPUT);
7 pinMode (motorPin2, COUTPUT);
8 pinMode (motorPin3d, CUTPUT);
g pinMode (motorPind, OUTPUT);
10 Serial .begin(115200);
11 Serial.println("AT");
12| while{!Serial.find{"CE"))}{
13 Serial.println("AT");
14 }
15 delay (1000} ;
16 Serial.println ("AT+RST");
17 delay (1000);
8 while {!Serial.find{"ready"))
19 delay (1000) ;
20 Serial.println ("AT+CWMODE=1");
21 while(!Serial.find("0K"));
22 Serial.println("AT+CWIRP=\""+Wifi Name+"\", \""+§ifi_ Password+"\"");
23 while {!Serial.find{"CE"));
24 Serial.print ("AT+CIFSR\z\n");
25 Serial.print(read esp(1000));
26 clear_serial(2000);
27 Serial.print ("AT+CIPMUX=1\r\n");
28 clear_serial (2000);
28 Serial.print ("AT+CIPSERVER=1, 80\r\n");
30 clear_serial (2000);
31}

In the "setup” section, set the LED pins as outputs. Then, start the serial communication.
The ESP8266 module is connected via serial communication. The speed of serial
communication must be the same with the communication speed of the ESP8266 module. If
the sample code does not work, you can correct this problem by updating the firmware of
ESP8266 module. You can find detailed information about the firmware update on:

https://maker.robotistan.com/esp8266-ile-iot-dersleri-1-esp8266-modulunu-guncelleme/ .

106 '

maker.robotistan.com

Step Motor Control with ESP8266

Send an AT command via serial communication to see if the ESP8266 module is ready. Wait
until the ESP8266 module is ready. Then, reset the module with “AT+RST"” command. Wait
until the reset process is completed.

Set the module as client by sending “AT+CWMODE=1" command. Then we connect to our
network with “AT + CWJAP” command. After waiting to connect to the network, read the IP
and MAC addresses with the "AT+CIFSR” command. Then print this data to the serial port.
Since Arduino’s communication pins with the computer and the esp8266 module are on the
same pins, prevent the communication from being interrupted with the “serialClean” function
after printing data to the serial port. This function allows you to delete data that is not used

in serial communication. This function will be explained later.

<O B3 [3] Arduino
32 void loop(){
33 if(Serial.available()){
34 if (Serial.find{"+IFD, ")} {
35 delay(200);
36 int connectionId = Serial.read{() - 48;
37 String command = read_esp(l000);
38 if (command. indexCf ("step=ileri”) !'= -1){
39 for{int adim = 0; adim < 5; adim++){
40 stepForward (50) ;
41 }
42 }
43 else if (command.indexof ("step=geri”) !'= -1){
44 for(int adim = 0; adim < 5; adimt++){
45 stepBackward (50) ;
46 }
47 1
48 String page = "<hl>Step Motor Control</hl>
";
49 paget+="
<buttonz<hl>Ileri</hl></button>";
50 page+="

<button><hl>Geri</hl></button>";
al command = "AT+CIPSEND=";
52 command += connectionld;
53 command += ", ";
54 command +=page.length();
35 command +="\r\n";
56 Serial.print (command) ;
57 delay{1000);
58 Serial.print(page);
549 delay(1000);
) command = "AT+CIPCLOSE=";
6l command+t=connectionId;
62 command+="%r\n";
63 Serial.print (command) ;
64 }
65 }
66 }

107 '

maker.robotistan.com

Step Motor Control with ESP8266

With the "AT+CIPMUX=1" command, set the module to allow multiple connections. Then,
create a server with the "AT+CIPSERVER=1" 80 command and start listening on port 80. The

ESP8266 module transmits incoming connection requests via serial communication. In the

“loop” section, check whether data comes from serial communication. The wait for the IPD

text to appear. The data after this text is the communication number. Synchronize this

number to the “connectionld” variable. You will use this number when sending page data and

terminating the connection.

The connection data from the ESP module are received by using the “espRead” function.

Then, with the "if-else if” structure, check whether there is a step motor control command in

this data. To do this, use “indexOf" function in “if". This function searches the position of the

given variable in an array of texts. It returns the -1 value if the given variable does not exist

in this array.

After the command processing sections are completed, start transmitting the site data to the

client. First, generate the site codes to be displayed on the client screen. These codes are
written in html language. With "AT+CIPSEND “"command, send to the ESP8266 module the
length of these codes and which client they will go. Then, send the site commands to the
module with “AT+CIPSEND" command. Finally, terminate the connection with “AT+CIPCLOSE"

command.

<> B3 [3] Arduino

Mo W B e O

String read esp (long int timeout) {

String received;
while (millis() - start_time < timeout){
if(Serial.availakble{)>0){
char ¢ = Serial.read();
received += o
}
H

received.replace ("AT+","");

return received;

8}

void clear serial (long int timeout) {
long int start time = millis();
while (millis() - start_time < timeout){
if(Serial.available{)>0){
serial.read();
}
}
H

maker.robotistan.com

108

Step Motor Control with ESP8266

The “espRead” function allows reading of commands from esp via serial communication. It

takes the variable named “timeQut” as input. Data is read in milliseconds for the time

according to the data in the “timeOut” variable. First, the start value of the function is stored

in the memory with the “start” variable. Then, with the "while()" structure, data is read by

serial communication as long as the running time of the total function is less than the

“timeQut” variable. This data is provided as function output.

The “serialClean” function works just like the “espRead” function, but it does not generate

any value as output. In this way, unused serial communication bytes are deleted from the

memory of Arduino.

<> 3 [A Arduino
27 woid stepForward(int delay time) {
88 digitalWrite (motorPinl, HIGH);
i3] digitalWrite (motorPin2, LOW);
a0 digitalWrite (motorPin3, LOW);
a1 digitalWrite (motorPind, LOW);
a9z delay(delay_time);
a3 digitalWrite (motorPinl, LOW);
g4 digitalWrite (motorPin2, HIGH);
a5 digitalWrite (motorPin3, LOW);
96 digitalWrite (motorPind, LOW);
a7 delay(delay time);
a9 digitalWrite (motorPinl, LOW);
a9 digitalWrite (motorPin2, LOW);
100 digitalWrite (motorPin3, HIGH);
101 digitalWrite (motorPind, LOW);
102 delay(delay_time);
103 digitalWrite (motorPinl, LOW);
104 digitalWrite (motorPin2, LOW);
105 digitalWrite (motorPin3, LCW);
106 digitalWrite (motorPind, HIGH);
107 delay(delay_time);
108}

The "stepForward()” function takes the "waitTime"” variable as an input. It gives HIGH value
to the pins of the step motor in order to move the steper motor forward. The time between 2

steps is set with the "waitTime" variable.

109 '

maker.robotistan.com

Step Motor Control with ESP8266

<O B3 [& Arduino

109 void stepBackward(int delay_time){
110 digitalWrite (motorPinl, LOW);
111 digitalWrite (motorPin2, LOW):
112 digitalWrite (motorPin3, LOW):
113 digitalWrite (motorPind, HIGH);
114 delay(delay time);

115 digitalWrite (motorPinl, LOW):
116 digitalWrite (motorPin2, LOW):
117 digitalWrite (motorPin3, HIGH):
118 digitalWrite (motorPin4d, LOW):
119 delay(delay_time);

120 digitalWrite (motorPinl, LOW):
121 digitalWrite (motorPin2, HIGH);
122 digitalWrite (motorPin3, LOW):
123 digitalWrite (motorPind, LOW);
124 delay(delay_time);

125 digitalWrite (motorPinl, HIGH);
€ digitalWrite (motorPin2, LOW):
-

1z digitalWrite (motorPin3, LOW);
128 digitalWrite (motorPin4d, LOW):
129 delay(delay time):

The “stepBack” function works just like the “stepForward” function, but the HIGH values
given to the motor pins are given in the reverse order of the “stepForward "function. This
allows the step motor to rotate in reverse.

Before assigning the codes to Arduino, the TX and RX pins of the ESP8266 module must be
removed. When programming Arduino, if the TX and RX pins of the ESP8266 module are
connected they prevent communication between the Arduino and the Computer, and thus
the programming of Arduino.

After writing the sample code and setting up the sample circuit, let's run the system.

& COMID (Arduino/Genuino Uno) - [} *
[| cnder
AT
nT
BT+RST

\RT+CWHCODE=1
AT+CWJIAP="Arduino™, "12345678"
AT+CIFSR

CIFSR IP Address
+CIFSR:STAIP,|"152.168.137.140"

+CIFSR:STAMAC, "1E8:fe:34:da:59:8b"

(CE

RT+CIPMUX=1
InT+CIPSERVER=1,80

110

maker.robotistan.com

Step Motor Control with ESP8266

Open the serial port via Arduino IDE and set the data rate to 115200. Communication with
the ESP8266 module can be seen here. When the above settings are made, connect to the IP

address of the serial port with a web browser.

(— > C @ ® 192.168.137.140 - 9% N @ =
Step Motor Control

Forward

Backward

Rotate the step motor by clicking the forward-back buttons in the interface that appears in

the web browser.

111

maker.robotistan.com

maker.robotistan.com

maker.robotistan.com

robotistan [SEHREE

You can access the blog posts of
applications from the link below.
http://bit.ly/arduinodersleri

2 YouTube

You can access the videos of
applications from the link below.
http://bit.ly/arduinovideodersler

robotistan.com E

Robotistan Elektronik Ticaret A.S.

Prepared by: ilge iPEK (Editor - Editor) - Yasir CiCEK (Editor) - Mehmet Nasir KARAER (Graphics)
info@robotistan.com - www.robotistan.com
Phone: 0850 766 425

